这一研究成果由美国加利福尼亚大学洛杉矶分校王康隆课题组主导,斯坦福大学张首晟课题组及上海科技大学寇煦丰课题组等8家单位合作完成。通讯作者何庆林、寇煦丰、张首晟、王康隆,均为华人科学家。
事件
反粒子是其本身的神秘粒子终现身
粒子世界有两大家族,费米子和玻色子。目前人类已知的所有基本物质粒子都是费米子,是构成物质的原材料(电子、夸克、中微子),而传递作用力的粒子(光子、介子、胶子、W和Z玻色子)都是玻色子。
较早之前,学界普遍认为,每一种费米子都有它的反粒子,且状态与粒子本身相反。1937年,意大利物理学家埃托雷·马约拉纳预言,自然界中可能存在一类特殊的费米子,它的反粒子就是它自身,这种费米子被称为“马约拉纳费米子”。
不过,马约拉纳费米子存在的证据一直未被发现,它和中微子、希格斯玻色子等一起,成为理论早有预言但长期无法验证的粒子。80年后,终于有一支科研团队证明了它的存在。
张首晟以“天使粒子”为团队新发现的这种独特费米子命名。他说,过去学界认为有粒子必有其反粒子,正如有天使必有魔鬼。“但今天,我们找到了一个没有反粒子的粒子,一个只有天使,没有魔鬼的完美世界”,张首晟说。
影响
具重要应用价值 使量子计算成现实
神秘“天使粒子”的发现有怎样的价值?
“马约拉纳费米子是上世纪三十年代理论上预言的可能存在的一种基本粒子”,中国科学院卡弗里理论物理研究所所长张富春表示,马约拉纳费米子是与物理大原理一致的,没有原因不存在,“以后主要的猜测是,中微子也许就是这一类粒子,所以它的发现很重要”。
北京大学物理学院一位研究员解释说,通常的粒子都在某种程度上遵循粒子数守恒定律,如果要产生必须同时产生对应的反粒子,但是马约拉纳费米子可以“凭空”成对产生,因为它是自己的反粒子。
“如果这个实验和理论解释都没有问题,那应该是首次发现手性马约拉纳费米子”,该研究员解释说,“手性”(chiral)可以大致认为是这种粒子只沿一个方向运动,这通常被认为有可能用来实现低能耗的信息传输和处理。
有国际同行评价,发现马约拉纳费米子是继发现“上帝粒子”(希格斯玻色子)、中微子、引力子之后的又一里程碑发现,不仅具有重大的理论意义,而且具有重要的潜在应用价值:让量子计算成为现实。
张首晟解释说,量子世界本质上是平行的,一个量子粒子能够同时穿过两个狭缝。因此,量子计算机能够进行高度并行的计算,远比经典计算机有效。以算术问题为例,如果给出一个很大的数字,问这个数字能否拆成两个数字的乘积,那么经典计算机只能用穷举法逐一尝试整除计算,而量子计算机可以在一瞬间同时完成所有可能项的测算。
“天使粒子”80年探寻史
1928年 英国物理学家狄拉克预测:宇宙中每个基本粒子都有一个与其对应的反粒子。
1932年 美国物理学家安德森发现第一个反物质——电子的反粒子。安德森的实验验证了狄拉克的理论,也是人类首次发现反物质的存在。
1937年 意大利理论物理学家埃托雷·马约拉纳预测,在“费米子”(包括质子、中子、电子、中微子和夸克)中,应该有一些粒子,它们本身就是自己的反粒子。即我们今天所称的“马约拉纳费米子”。
1938年 马约拉纳做出这一预测后不久,在一次乘船旅行中神秘失踪。自那起后的80年,这一神奇粒子成为物理学家们梦寐以求的探索目标。
2017年7月21日 学术期刊《科学》发表四位华人科学家领衔的科研团队的最新研究成果:首次发现“手性马约拉纳费米子”。
据新华网
一个量子粒子能够同时穿过两个狭缝。